GaN substrate

GaN substrate

What we provide:

Item undoped N- Si doped N+ Semi-insulating P+
Freestanding GaN substrate yes yes yes
GaN on sapphire yes yes yes yes
InGaN on sapphire yes ***
AlN on sapphire yes
LED wafer (p+GaN/MOW/N+GaN/N-AlGaN/N+GaN/N-GaN/sapphire)

Freestanding GaN substrate/GaN on sapphire/LED wafer:

 

For specifications of Freestanding GaN substrate/GaN on sapphire/LED wafer, please view Gallium Nitride wafer:

http://www.qualitymaterial.net/products_7.html

 

InGaN on Sapphire:

 

For specification of InGaN on sapphire template, pleas view InGaN substrate:

https://www.powerwaywafer.com/InGaN-Substrates.html

 

AlN on Sapphire:

 

For specification of AlN on sapphire template, pleas view AlN substrate:

http://www.qualitymaterial.net/AlN-Substrate.html

 

AlGaN/GaN on Sapphire

 

For AlGaN/GaN on sapphire template, please view AlGaN/GaN:

https://www.powerwaywafer.com/GaN-HEMT-epitaxial-wafer.html

Lattice constant of GaN substrate

Lattice parameters of gallium nitride were measured using high‐resolution x‐ray diffraction

GaN,Wurtzite sructure. The lattice constants a vs. temperature.

GaN,Wurtzite sructure. The lattice constants c vs. temperature

Properties of GaN substrate

PROPERTY / MATERIAL Cubic (Beta) GaN Hexagonal (Alpha) GaN
. . .
Structure Zinc Blende Wurzite
Space Group F bar4 3m C46v ( = P63mc)
Stability Meta-stable Stable
Lattice Parameter(s) at 300K 0.450 nm a0 = 0.3189 nm
c0 = 0.5185 nm
Density at 300K 6.10 g.cm-3 6.095 g.cm-3
Elastic Moduli at 300 K . . . . . .
Linear Thermal Expansion Coeff. . . . Along a0: 5.59×10-6 K-1
at 300 K Along c0: 7.75×10-6 K-1
Calculated Spontaneous Polarisations Not Applicable – 0.029 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
Calculated Piezo-electric Coefficients Not Applicable e33 = + 0.73 C m-2
e31 = – 0.49 C m-2
Bernardini et al 1997
Bernardini & Fiorentini 1999
A1(TO): 66.1 meV
E1(TO): 69.6 meV
Phonon Energies TO: 68.9 meV E2: 70.7 meV
LO: 91.8 meV A1(LO): 91.2 meV
E1(LO): 92.1 meV
Debye Temperature 600K (estimated)
Slack, 1973
. . . Units: Wcm-1K-1
1.3,
Tansley et al 1997b
2.2±0.2
for thick, free-standing GaN
Vaudo et al, 2000
2.1 (0.5)
for LEO material
where few (many) dislocations
Thermal Conductivity Florescu et al, 2000, 2001
near 300K
circa 1.7 to 1.0
for n=1×1017 to 4×1018cm-3
in HVPE material
Florescu, Molnar et al, 2000
2.3 ± 0.1
in Fe-doped HVPE material
of ca. 2 x108 ohm-cm,
& dislocation density ca. 105 cm-2
(effects of T & dislocation density also given).
Mion et al, 2006a, 2006b
Melting Point . . . . . .
Dielectric Constant . . . Along a0: 10.4
at Low/Lowish Frequency Along c0: 9.5
Refractive Index 2.9 at 3eV 2.67 at 3.38eV
Tansley et al 1997b Tansley et al 1997b
Nature of Energy Gap Eg Direct Direct
Energy Gap Eg at 1237K 2.73 eV
Ching-Hua Su et al, 2002
Energy Gap Eg at 293-1237 K 3.556 – 9.9×10-4T2 / (T+600) eV
        Ching-Hua Su et al, 2002
Energy Gap Eg at 300 K 3.23 eV 3.44 eV
Ramirez-Flores et al 1994 Monemar 1974
. .
3.25 eV 3.45 eV
Logothetidis et al 1994 Koide et al 1987
.
3.457 eV
Ching-Hua Su et al, 2002
Energy Gap Eg at ca. 0 K 3.30 eV 3.50 eV
Ramirez-Flores et al1994 Dingle et al 1971
Ploog et al 1995 Monemar 1974
Intrinsic Carrier Conc. at 300 K . . . . . .
Ionisation Energy of . . . Donor . . . . . . . .
Electron effective mass me* / m0 . . . 0.22
Moore et al, 2002
Electron Mobility at 300 K . . . .
for n = 1×1017 cm-3: ca. 500 cm2V-1s-1
for n = 1×1018 cm-3: ca. 240 cm2V-1s-1
for n = 1×1019 cm-3: ca. 150 cm2V-1s-1
Rode & Gaskill, 1995
Tansley et al 1997a
Electron Mobility at 77 K . . . . . . . .
for n = . .
Ionisation Energy of Acceptors . . . Mg: 160 meV
Amano et al 1990
Mg: 171 meV
Zolper et al 1995
Ca: 169 meV
Zolper et al 1996
Hole Hall Mobility at 300 K . . . . . . .
for p= . . .
Hole Hall Mobility at 77 K . . . . . . .
for p= . . .
. Cubic (Beta) GaN Hexagonal (Alpha) GaN

Application of GaN substrate

Gallium nitride (GaN), with a direct band gap of 3.4 eV, is a promising material in the development of short-wavelength light emitting devices. Other optical device applications for GaN include semiconductor lasers and optical detectors.

Share this post