A multi-technique characterization of electroless gold contacts on single crystal CdZnTe radiation detectors

Cadmium zinc telluride (CdZnTe) is now established as a popular choice of sensor for the detection of γ-rays and hard x-rays, leading to its adoption in security, medical and scientific applications. There are still many technical challenges involving the deposition of high-quality, uniform metal contacts on CdZnTe. A detailed understanding of the interface between the bulk CdZnTe and the metal contacts is required for improvements to be made. To understand these complex interfaces, a range of complementary materials characterization techniques have been employed, including x-ray photoelectron spectroscopy depth profiling, focused ion beam cross section imaging and energy dispersive x-ray spectroscopy. In this paper a number of Redlen CdZnTe detectors with asymmetric anode/cathode contacts have been investigated. The structures of the contacts were imaged and their compositions identified. It was found that the two stage electroless indium/electroless gold deposition process on ‘polished only’ surfaces formed a complex heterojunction on the cathode, incorporating compounds of gold, gold–tellurium, tellurium oxide (of varying stoichiometry) and cadmium chloride up to depths of several 100 nm. Trace amounts of indium were found, in the form of an indium–gold compound, or possibly indium oxide. At the surface of the CdZnTe bulk, a thin Cd depleted layer was observed. The anode heterojunction, formed by a single stage electroless gold deposition, was thinner and exhibited a simpler structure of gold and tellurium oxide. The differing (asymmetric) nature of the anode/cathode contacts gave rise to asymmetric current–voltage (IV) behaviour and spectroscopy.


For more information, please visit our website: https://www.powerwaywafer.com,
send us email at [email protected] and [email protected]

Share this post