InP wafer
PAM-XIAMEN offers VGF InP(Indium Phosphide) wafer with prime or test grade including undoped, N type or semi-insulating. The mobility of InP wafer is different in different type, undoped one>=3000cm2/V.s, N type>1000 or 2000cm2V.s(depends on different doping concentration), P type: 60+/-10 or 80+/-10cm2/V.s(depends on different Zn doping concentration), and semi-insulting one>2000cm2/V.s, the EPD of Indium Phosphide is below 500/cm2 normally.
- Description
Product Description
InP wafer
PAM-XIAMEN offers Compound Semiconductor InP wafer – Indium Phosphide which are grown by LEC(Liquid Encapsulated Czochralski) or VGF(Vertical Gradient Freeze) as epi-ready or mechanical grade with n type, p type or semi-insulating in different orientation(111)or(100).And the dopants can be Sulphur,Sn(Tin), Zinc or customs. the Laser Mark as specified on backside of InP wafer along with primary flat. The orientation with slight deflection angle is available, such as (100)0.075°towards[110]]±0.025°
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic (“zinc blende”) crystal structure, identical to that of GaAs and most of the III-V semiconductors.Indium phosphide can be prepared from the reaction of white phosphorus and indium iodide[clarification needed] at 400 °C.,[5] also by direct combination of the purified elements at high temperature and pressure, or by thermal decomposition of a mixture of a trialkyl indium compound and phosphide. InP is used in high-power and high-frequency electronics[citation needed] because of its superior electron velocity with respect to the more common semiconductors silicon and gallium arsenide.
Item | Specifications | |||
Dopant | N-type | N-type | P-type | SI-type |
Conduction Type | Undoped | Sulphur | Zinc | lron |
Wafer Diameter | 2″ | |||
Wafer Orientation | (100)±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | 3×1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | N/A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <10um | |||
BOW | <10um | |||
WARP | <12um | |||
Laser marking | upon request | |||
Suface finish | P/E, P/P | |||
Epi ready | yes | |||
Package | Single wafer container or cassette |
3″ InP Wafer Specification
Item | Specifications | |||
Dopant | N-type | N-type | P-type | SI-type |
Conduction Type | Undoped | Sulphur | Zinc | lron |
Wafer Diameter | 3″ | |||
Wafer Orientation | (100)±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3×1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | N/A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <12um | |||
BOW | <12um | |||
WARP | <15um | |||
Laser marking | upon request | |||
Suface finish | P/E, P/P | |||
Epi ready | yes | |||
Package | Single wafer container or cassette |
4″ InP Wafer Specification
Item | Specifications | |||
Dopant | N-type | N-type | P-type | SI-type |
Conduction Type | Undoped | Sulphur | Zinc | lron |
Wafer Diameter | 4″ | |||
Wafer Orientation | (100)±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3×1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | N/A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <15um | |||
BOW | <15um | |||
WARP | <15um | |||
Laser marking | upon request | |||
Suface finish | P/E, P/P | |||
Epi ready | yes | |||
Package | Single wafer container or cassette |
PL(Photoluminescence) Test of InP Wafer
We measure InP wafers by Peak Lambda, Peak int, and FWHM, the spectra mapping is as follows:
The the typical values is see below data:
Peak Lambda(nm) | Peak Int | FWHM(nm) |
1279.4 | 7.799 | 48.5 |
1279.8 | 5.236 | 44.6 |