plaquette InP
PAM-XIAMEN propose des plaquettes VGF InP (phosphure d'indium) de qualité primaire ou de test, y compris non dopées, de type N ou semi-isolantes. La mobilité de la plaquette InP est différente selon le type, non dopé>=3000cm2/Vs, type N>1000 ou 2000cm2V.s(dépend de la concentration de dopage différente), type P : 60+/-10 ou 80+/-10cm2/ Vs (dépend de différentes concentrations de dopage Zn) et semi-injurieux> 2000cm2/Vs, l'EPD du phosphure d'indium est normalement inférieur à 500/cm2.
- La description
Description du produit
plaquette InP
PAM-XIAMEN, a leading InP wafer supplier, offers Compound Semiconductor InP wafer – Indium Phosphide which are grown by LEC(Liquid Encapsulated Czochralski) or VGF(Vertical Gradient Freeze) as epi-ready or mechanical grade with n type, p type or semi-insulating. The InP wafer orientation (111) or (100) is available. And the dopants can be Sulphur, Sn(Tin), Zinc or customs. The Laser Mark as specified on backside of InP wafer along with primary flat. The orientation with slight deflection angle is available, such as (100)0.075° towards [110]]±0.025°.
Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic (“zinc blende”) crystal structure, identical to that of GaAs and most of the III-V semiconductors. Indium phosphide can be prepared from the reaction of white phosphorus and indium iodide [clarification needed] at 400 °C., also by direct combination of the purified elements at high temperature and pressure, or by thermal decomposition of a mixture of a trialkyl indium compound and phosphide. Indium phosphide wafers are used in high-power and high-frequency electronics [citation needed] because of the superior electron velocity with respect to the more common semiconductors silicon and gallium arsenide. The InP wafer size we can offer is 2”, 3” and 4”, and the InP wafer thickness will be 350~625um.
Voici la spécification particulière:
Article | Caractéristiques | |||
dopant | De type N | De type N | De type P, | SI type |
Type de Conduction | non dopé | Soufre | Zinc | lron |
Diamètre wafer | 2 " | |||
Orientation wafer | (100) ± 0,5 ° | |||
Epaisseur wafer | Min:325 Max:375 | |||
Plat Longueur primaire | 16 ± 2 mm | |||
Plat Longueur secondaire | 8 ± 1mm | |||
Concentration porteuse | 3×1016cm-3 | (0.8-6)x1018cm-3 | (0,6 à 6) x1018cm-3 | N / A |
Mobilité | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Résistivité | N / A | N / A | N / A | N / A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <10um | |||
ARC | <10um | |||
CHAÎNE | <12um | |||
marquage laser | à la demande | |||
finition Suface | P / E, P / P | |||
Epi prêt | oui | |||
Paquet | récipient de plaquettes à l'unité ou de la cassette |
2″ P Type InP Wafer Specification
Article | Parameter | UOM |
Matériel | InP | |
Conduct Type/Dopant | S-C-P/Zn | |
Grade | Prime | |
Diameter: | 50.5±0.4 | mm |
Orientation: | (100) ± 0,5 ° | |
Orientation Angle: | / | |
Thickness: | Min:325 Max:375 | um |
Carrier Concentration: | Min:0.6E18 Max:3E18 | cm-3 |
Resistivity: | Min:/ Max:/ | ohm.cm |
Mobility: | Min:/ Max:/ | cm-2/V.sec |
EPD: | Ave<:1000 Max<:/ | cm-2 |
TTV: | Max:10 | um |
TIR: | Max:10 | um |
BOW: | Max:10 | um |
Warp: | Max:15 | um |
Flat Option: | EJ | |
Primary Flat Orientation: | (0-1-1) | |
Primary Flat Length: | 16±1 | mm |
Secondary Flat Orientation: | (0-11) | |
Secondary Flat Length: | 7±1 | mm |
Suface: | Side 1:Polished Side 2:etched | |
Edge Rounding | 0.25(Conform to SEMI Standards) | mmR |
Particle Count: | / | |
Paquet | individual container filled with N2 | |
Epi-ready | Yes | |
Marquage au laser | Back side major flat | |
Remark: | Special specifications will be discussed separately |
3″ InP Wafer Specification
Article | Caractéristiques | |||
dopant | De type N | De type N | De type P, | SI type |
Type de Conduction | non dopé | Soufre | Zinc | lron |
Diamètre wafer | 3 " | |||
Orientation wafer | (100) ± 0,5 ° | |||
Epaisseur wafer | 600 ± 25um | |||
Plat Longueur primaire | 16 ± 2 mm | |||
Plat Longueur secondaire | 8 ± 1mm | |||
Concentration porteuse | ≤3×1016cm-3 | (0.8-6)x1018cm-3 | (0,6 à 6) x1018cm-3 | N / A |
Mobilité | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Résistivité | N / A | N / A | N / A | N / A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <12um | |||
ARC | <12um | |||
CHAÎNE | <15UM | |||
marquage laser | à la demande | |||
finition Suface | P / E, P / P | |||
Epi prêt | oui | |||
Paquet | récipient de plaquettes à l'unité ou de la cassette |
4″ InP Wafer Specification
Article | Caractéristiques | |||
dopant | De type N | De type N | De type P, | SI type |
Type de Conduction | non dopé | Soufre | Zinc | lron |
Diamètre wafer | 4 " | |||
Orientation wafer | (100) ± 0,5 ° | |||
Epaisseur wafer | 600 ± 25um | |||
Plat Longueur primaire | 16 ± 2 mm | |||
Plat Longueur secondaire | 8 ± 1mm | |||
Concentration porteuse | ≤3×1016cm-3 | (0.8-6)x1018cm-3 | (0,6 à 6) x1018cm-3 | N / A |
Mobilité | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70×103cm2/V.s | >1000cm2/V.s |
Résistivité | N / A | N / A | N / A | N / A |
EPD | <1000cm-2 | <500cm-2 | <1×103cm-2 | <5×103cm-2 |
TTV | <15UM | |||
ARC | <15UM | |||
CHAÎNE | <15UM | |||
marquage laser | à la demande | |||
finition Suface | P / E, P / P | |||
Epi prêt | oui | |||
Paquet | récipient de plaquettes à l'unité ou de la cassette |
PL(Photoluminescence) Test of phosphure d'indium Wafer
We measure InP wafers by Peak Lambda, Peak int, and FWHM, the spectra mapping is as follows:
About InP Wafer Application
As a new type of compound semiconductor material, InP wafer market share is increasing gradually. Due to the excellent indium phosphide properties, the performance of microwave power source devices, microwave amplifiers and gate FETs fabricated on InP material will be better than those fabricated on existing gallium arsenide materials. Indium phosphide heterojunction lasers are also extremely promising light sources in optical fiber communications.
InP wafer fabrication for devices, like growing millimeter wave microelectronic devices and optoelectronic device materials for optical fiber communications, is widely used. With the continuous improvement of device performance and the reduction of device size, the quality requirements for indium phosphide wafers are getting higher and higher. Therefore, the InP wafer process is optimizing gradually.
The the typical values is see below data:
Peak Lambda(nm) | Peak Int | FWHM(nm) |
1279.4 | 7.799 | 48.5 |
1279.8 | 5.236 | 44.6 |