InGaAsP/InGaAs on InP substrates

InGaAsP/InGaAs on InP substrates

PAM-XIAMEN, an epitaxy manufactory, provide InGaAsP/InGaAs epi on InP substrate and custom InP thin films on InP wafers for academic research in III-V photonics. The epitaxial wafer (Photodiode) consist of different InGaAs, InP and InGaAsP layers on top of a semi-insulated InP substrate as follows:

1. Structures of InP Epitaxy Wafer

Structure1: 1.55um InGaAsP QW laser 

No. Layer Doping
0 InP Substrate S-doped, 2E18/cm-3
1 n-InP buffer 1.0um, 2E18/cm-3
2 1.15Q-InGaAsP waveguide 80nm,undoped
3 1.24Q-InGaAsP waveguide 70nm,undoped
4 4×InGaAsP QW(+1%)
5×InGaAsP Barrier
5nm
10nm
PL:1550nm
5 1.24Q-InGaAsP waveguide 70nm,undoped
6 1.15Q-InGaAsP waveguide 80nm,undoped
7 InP space layer 20nm,undoped
8 InP 100nm,5E17
9 InP 1200 nm, 1.5E18
10 InGaAs 100 nm, 2E19

 

Specification of Structure1:

1)   Method: MOCVD

2)   Size of wafer: 2”

3)   InGaAsP/InGaAs growth on InP substrates

4)   3-5 types of InGaAsP composition

5)   PL tolerance of +/- 5nm, PL std. dev. <3nm across the wafer (with an exclusion zone of 5mm from the wafer circumference)

6)   PL target range 1500nm.

7)   Strain target -1.0% +/- 0.1% (compressive strain)

8)    No. of layers: 8-20

9)   Total growth thickness: 1.0~3.0um

10)   Parameters to be measured: X-Ray Diffraction Measurement (thickness, strain), Photoluminescence Spectrum (PL, PL uniformity), Carrier Concentration Profiling

 

Structure 2InP-based Wafers for Fabricating Photodiodes

PAM-201113-INP-BASED

Specification for MUTC-PD Layer Structure

No. Material Doping concentration

(cm-3)

Thickness

(um)

15 p+-InGaAs:Zn 0.05
14 p+-InP:Zn
13 p+-InGaAsP:Zn(Q1.10 um) 0.01
12 p+-InGaAsP:Zn(Q1.40 um) 2×1018
11 p+-InGaAs:Zn 0.05
10 p-InGaAs:Zn
9 p+-InGaAs:Zn
8 n-InGaAs:Si
7 n-InGaAsP:Si(Q1.50 um) 1×1016
6 n-InGaAsP:Si(Q1.15 um) 0.01
5 n+-InP:Si
4 n-InP:Si 5×1016
3 n-InP:Si 0.10
2 n+-InGaAsP.Si(Q1.25 um)
1 n+-InP:Si  
0 S.I. InP-substrate (2″ wafer) Fe-Doped

 

Structure 3:
PAM-190925-INGAASP
Substrate: 3″, InP:S[100], Nc = (3-8)E18/cc, EPD < 5000/cm2
Epi-layer 1: 300nm InP, undoped
Epi-layer 2: 200nm, InGaAsP, undoped, lattice matched, emitting at 1275 nm
Epi-layer 3: 100nm, InP, undoped

Structure 4:
Substrate: 3″, InP:S[100], Nc = (3-8)E18/cc, EPD < 5000/cm2
Epi-layer 1: 300nm InP, undoped
Epi-layer 2: 75nm, InGaAsP, undoped, lattice matched, emitting at 1000 nm
Epi-layer 3: 50nm, InGaAsP, undoped, lattice matched, emitting at 1275 nm
Epi-layer 4: 75nm, InGaAsP, undoped, lattice matched, emitting at 1000 nm
Epi-layer 5: 100nm, InP, undoped

Structure 5:

P-type InP thin films on undoped InP substrate (DSP)

PAM181011-INP

Layer No. Composition Thickness
Epi-layer 5 p-InP 50nm
Epi-layer 4 InGaAsP undoped
Epi-layer 3 p-InP 50nm
Epi-layer 2 InGaAsP undoped
Epi-layer 1 p-InP
Substrate InP

 

We compare the photocarrier lifetime measured in Br-irradiated InGaAs and cold Fe-implanted InGaAsP. We also demonstrate the possibility of a two-photon absorption (TPA) process in ErAs:GaAs. The lifetime and the TPA were measured with a fiber-based 1550 nm time-resolved differential transmission (∆T) set-up. The InGaAs-based materials show a positive ∆T with sub-picosecond lifetime, whereas ErAs:GaAs shows a negative ∆T consistent with a two-photon absorption process.

 2. FAQ for InP Epitaxial Growth

Q1: Have you done any optical measurements on those undoped wafers- such as infrared reflection and transmission? If yes, can you please send me that information?

A: Infrared reflection and transmission data is for transparent substrate detection, but for epi wafer, even if the substrate is double side polished, after epitaxy, the back will also be black, so that infrared reflection and transmission is not observed.

Q2: For InP-based growth, you don’t expect any problems with alloy ordering when using substrates without an off-cut?
A:
It is ok, no ordering problem when using InP susbtrate without off-cut.

 

Source: PAM-XIAMEN, American Chemical Society

For more information, please contact us email at victorchan@powerwaywafer.com and powerwaymaterial@gmail.com.

Share this post