Laser recovery of grinding-induced subsurface damage in the edge and notch of a single-crystal silicon wafer

Laser recovery of grinding-induced subsurface damage in the edge and notch of a single-crystal silicon wafer

The edges and notches of silicon wafers are usually machined by diamond grinding, and the grinding-induced subsurface damage causes wafer breakage and particle contamination problems. However, the edge and notch surfaces have large curvature and sharp corners, thus it is difficult to be finished by chemo-mechanical polishing. In this study, a nanosecond pulsed Nd:YAG laser was used to irradiate the edge and notch of a boron-doped single-crystal silicon wafer to recover the grinding-induced subsurface damage. The reflection loss and the change of laser fluence when irradiating a curved surface were considered, and the damage recovery behavior was investigated. The surface roughness, crystallinity, and hardness of the laser recovered region were measured by using white light interferometry, laser micro-Raman spectroscopy, and nanoindentation, respectively. The results showed that after laser irradiation the damaged region was recovered to a single-crystal structure with nanometric surface roughness, and the surface hardness was also improved. This study demonstrates that laser recovery is a promising post-grinding process for improving the surface integrity of the edge and notch of silicon wafers.

 

Source:IOPscience

For more information, please visit our website: https://www.powerwaywafer.com,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

Share this post