What we provide:
Item | undoped N- | Si doped N+ | Semi-insulating | P+ |
Корпусная GaN-подложка | yes | yes | yes | |
GaN on sapphire | yes | yes | yes | yes |
InGaN on sapphire | yes | *** | ||
AlN on sapphire | yes | |||
LED wafer | (p+GaN/MOW/N+GaN/N-AlGaN/N+GaN/N-GaN/sapphire) |
Freestanding GaN substrate/GaN on sapphire/LED wafer:
For specifications of Freestanding GaN substrate/GaN on sapphire/LED wafer, please view Gallium Nitride wafer:
http://www.qualitymaterial.net/products_7.html
InGaN on Sapphire:
For specification of InGaN on sapphire template, pleas view InGaN substrate:
https://www.powerwaywafer.com/InGaN-Substrates.html
AlN on Sapphire:
For specification of AlN on sapphire template, pleas view AlN substrate:
http://www.qualitymaterial.net/AlN-Substrate.html
AlGaN/GaN on Sapphire:
For AlGaN/GaN on sapphire template, please view AlGaN/GaN:
https://www.powerwaywafer.com/GaN-HEMT-epitaxial-wafer.html
Lattice constant of GaN substrate
Lattice parameters of gallium nitride were measured using high‐resolution x‐ray diffraction
GaN,Wurtzite sructure. The lattice constants a vs. temperature.
GaN,Wurtzite sructure. The lattice constants c vs. temperature
Properties of GaN-подложка
PROPERTY / MATERIAL | Cubic (Beta) GaN | Hexagonal (Alpha) GaN |
. | . | . |
Structure | Zinc Blende | Wurzite |
Space Group | F bar4 3m | C46v ( = P63mc) |
Stability | Meta-stable | Stable |
Lattice Parameter(s) at 300K | 0.450 nm | a0 = 0.3189 nm |
c0 = 0.5185 nm | ||
Density at 300K | 6.10 g.cm-3 | 6.095 g.cm-3 |
Elastic Moduli at 300 K | . . . | . . . |
Linear Thermal Expansion Coeff. | . . . | Along a0: 5.59×10-6 K-1 |
at 300 K | Along c0: 7.75×10-6 K-1 | |
Calculated Spontaneous Polarisations | Not Applicable | – 0.029 C m-2 |
Bernardini et al 1997 | ||
Bernardini & Fiorentini 1999 | ||
Calculated Piezo-electric Coefficients | Not Applicable | e33 = + 0.73 C m-2 |
e31 = – 0.49 C m-2 | ||
Bernardini et al 1997 | ||
Bernardini & Fiorentini 1999 | ||
A1(TO): 66.1 meV | ||
E1(TO): 69.6 meV | ||
Phonon Energies | TO: 68.9 meV | E2: 70.7 meV |
LO: 91.8 meV | A1(LO): 91.2 meV | |
E1(LO): 92.1 meV | ||
Debye Temperature | 600K (estimated) | |
Slack, 1973 | ||
. . . | Units: Wcm-1K-1 | |
1.3, | ||
Tansley et al 1997b | ||
2.2±0.2 | ||
for thick, free-standing GaN | ||
Vaudo et al, 2000 | ||
2.1 (0.5) | ||
for LEO material | ||
where few (many) dislocations | ||
Thermal Conductivity | Florescu et al, 2000, 2001 | |
near 300K | ||
circa 1.7 to 1.0 | ||
for n=1×1017 to 4×1018см-3 | ||
in HVPE material | ||
Florescu, Molnar et al, 2000 | ||
2.3 ± 0.1 | ||
in Fe-doped HVPE material | ||
of ca. 2 x108 ohm-cm, | ||
& dislocation density ca. 105 cm-2 | ||
(effects of T & dislocation density also given). | ||
Mion et al, 2006a, 2006b | ||
Melting Point | . . . | . . . |
Dielectric Constant | . . . | Along a0: 10.4 |
at Low/Lowish Frequency | Along c0: 9.5 | |
Refractive Index | 2.9 at 3eV | 2.67 at 3.38eV |
Tansley et al 1997b | Tansley et al 1997b | |
Nature of Energy Gap Eg | Direct | Direct |
Energy Gap Eg at 1237K | 2.73 eV | |
Ching-Hua Su et al, 2002 | ||
Energy Gap Eg at 293-1237 K | 3.556 – 9.9×10-4T2 / (T+600) eV | |
Ching-Hua Su et al, 2002 | ||
Energy Gap Eg at 300 K | 3.23 eV | 3.44 eV |
Ramirez-Flores et al 1994 | Monemar 1974 | |
. | . | |
3.25 eV | 3.45 eV | |
Logothetidis et al 1994 | Koide et al 1987 | |
. | ||
3.457 eV | ||
Ching-Hua Su et al, 2002 | ||
Energy Gap Eg at ca. 0 K | 3.30 eV | 3.50 eV |
Ramirez-Flores et al1994 | Dingle et al 1971 | |
Ploog et al 1995 | Monemar 1974 | |
Intrinsic Carrier Conc. at 300 K | . . . | . . . |
Ionisation Energy of . . . Donor | . . . . | . . . . |
Electron effective mass me* / m0 | . . . | 0.22 |
Moore et al, 2002 | ||
Electron Mobility at 300 K | . . . | . |
for n = 1×1017 cm-3: | ca. 500 cm2V-1s-1 | |
for n = 1×1018 cm-3: | ca. 240 cm2V-1s-1 | |
for n = 1×1019 cm-3: | ca. 150 cm2V-1s-1 | |
Rode & Gaskill, 1995 | ||
Tansley et al 1997a | ||
Electron Mobility at 77 K | . . . . | . . . . |
for n = . . | ||
Ionisation Energy of Acceptors | . . . | Mg: 160 meV |
Amano et al 1990 | ||
Mg: 171 meV | ||
Zolper et al 1995 | ||
Ca: 169 meV | ||
Zolper et al 1996 | ||
Hole Hall Mobility at 300 K | . . . | . . . . |
for p= . . . | ||
Hole Hall Mobility at 77 K | . . . . | . . . |
for p= . . . | ||
. | Cubic (Beta) GaN | Hexagonal (Alpha) GaN |
Application of GaN substrate
Gallium nitride (GaN), with a direct band gap of 3.4 eV, is a promising material in the development of short-wavelength light emitting devices. Other optical device applications for GaN include semiconductor lasers and optical detectors.