N-type or P-type 125mm silicon wafer can be supplied with the orientation of <111> or <100>. More specs are shown as following:

## 1. 125mm Silicon Substrate Wafer List

**No. 1**

ID | Dia | Type | Dopant | Ori | Res (Ohm-cm) |
Thick (um) | Polish | Grade | Description |

PAM2683 | 125mm | N | As | <111> | <0.0035 | 375um | SSP | MECH | Mechanical Grade. EPI Layer: N/Phos Res: 4.59-5.874ohm.cm 12-16um |

PAM2684 | 125mm | N | P | <100> | <0.001 | 3000um | SSP | Test | 3mm thick |

PAM2685 | 125mm | P | B | <111> | 43485 | 525-575um | SSP | Test | Sold As-Is |

PAM2686 | 125mm | P | B | <111> | 43485 | 500-550um | SSP | Test | Sold As-Is |

**No. 2**

Item | Material | Orient. | Diam (mm) |
Thck (μm) |
Surf. | Resistivity (Ωcm) |
Comment |

PAM2687 | p-type Si:B | [100] | 5″ | 889 ±13 | P/E | FZ >1,000 | SEMI Prime, 1Flat, Empak cst |

PAM2688 | p-type Si:B | [100] | 5″ | 920 ±10 | E/E | FZ >1,000 | Empak cst |

PAM2689 | p-type Si:B | [100] | 5″ | 920 ±10 | E/E | FZ >1,000 | Warp measured <8μm, Empak cst |

PAM2690 | n-type Si:P | [100] | 5″ | 400 | P/E | FZ 7,000–14,300 | SEMI Prime, 1Flat, Empak cst, Bow/Warp<20μm |

PAM2691 | n-type Si:P | [100] | 5″ | 400 | P/E | FZ 7,000–14,300 | SEMI Prime, 1Flat, Bow/Warp<20μm |

PAM2692 | n-type Si:P | [100] | 5″ | 350 | P/E | FZ 5,000–10,000 | SEMI Prime, 1Flat, Empak cst, Bow/Warp<20μm |

PAM2693 | n-type Si:P | [100] | 5″ | 350 | P/E | FZ 5,000–10,000 | SEMI Prime, 1Flat, Bow/Warp<20μm, in Empak cassettes of 5 wafers |

PAM2694 | n-type Si:P | [111] ±0.1° | 5″ | 200 ±15 | BROKEN | FZ >3,000 | Broken L/L wafers, in 2 pieces |

PAM2695 | n-type Si:P | [111] | 5″ | 300 ±15 | P/E | FZ 1,000–3,000 | SEMI Prime, in hard cassettes of 8 wafers |

PAM2696 | p-type Si:B | [100] | 5″ | 625 ±15 | P/P | 16–24 | SEMI Prime, Empak cst |

PAM2697 | p-type Si:B | [100] | 5″ | 600 ±10 | E/E | 2.0–3.5 | SEMI, 1Flat, coin roll |

PAM2698 | p-type Si:B | [100] | 5″ | 228 | P/P | 1–10 | SEMI Prime, 1Flat, Empak cst, TTV<5μm |

PAM2699 | p-type Si:B | [100] | 5″ | 525 | P/E | 1–100 | Silicon rings. 5″ outside diameter and 4″ inside diameter to hold 4″ wafers |

PAM2700 | p-type Si:B | [100] | 5″ | 625 ±15 | P/P | 1–100 | SEMI Prime, Empak cst |

PAM2701 | p-type Si:B | [100] | 5″ | 990 ±8 | P/P | 1–25 | SEMI Prime, Empak cst, TTV<1μm |

PAM2702 | p-type Si:B | [100] | 5″ | 525 | P/EOx | 0.002–0.004 {0.0031–0.0035} | SEMI Prime, 1Flat, Striations–Free, TTV<5μm, Back–Side LTO seal 0.50±0.05μm thick, in Empak cassettes of 7 wafers each |

PAM2703 | p-type Si:B | [100] | 5″ | 710 | E/E | RTP, One SEMI Flat, in Open Empak cst | |

PAM2704 | n-type Si:As | [100] | 5″ | 625 | P/E | 0.001–0.007 | SEMI TEST, 2Flats, Empak cst |

PAM2705 | n-type Si:As | [100] | 5″ | 625 | P/E | 0.001–0.007 | SEMI TEST, 2Flats, Empak cst |

PAM2706 | n-type Si:Sb | [100] ±1° | 5″ | 1,200 ±10 | P/E | 0.001–0.025 | SEMI Prime, SEMI notch, TTV<1μm Empak cst |

PAM2707 | n-type Si:As | [100] | 5″ | E/E | SEMI, 1Flat, in opened Empak cst | ||

PAM2708 | n-type Si:Sb | [100] | 5″ | E/E | SEMI 2Flats (2nd @135°), in opened Empak cst | ||

PAM2709 | n-type Si:Sb | [111–3.0°] ±0.5° | 5″ | 625 | P/E | 0.015–0.020 {0.0152–0.0185} | SEMI Prime, 2Flats, Empak cst |

PAM2710 | randomly | 5″ | randomly | P/E | randomly | SEMI Test, 1Flat, Empak cst | |

PAM2711 | randomly | 5″ | randomly | P/E | randomly | SEMI TEST, 1Flat, Empak cst | |

PAM2712 | n-type | [100] | 5″ | randomly | P/EOx | randomly | SEMI TEST, 2Flats (SF @ 180°), Back–side LTO seal, Empak cst |

PAM2713 | [100] | 5″ | randomly | P/E | randomly | SEMI Test, 1Flat, Empak cst | |

PAM2714 | n-type | [100] | 5″ | randomly | P/E | randomly | SEMI Test, 2Flats (2nd @ 180°), Empak cst |

PAM2715 | n-type Si:As | [100] | 5″ | 625 | OxP/EOx | 0.001–0.007 | SEMI Prime, 2Flats, Thermal Oxide 3.5±0.5µm thick, Empak cst |

## 2. 125mm Silicon Wafer Industry Applicable Norms

### 2.1 Dimensions and Allowable Deviations of 125mm Silicon Substrate

If the size and its upper and lower limits of 5 inch silicon wafer are not specified in the detailed specification, the requirements shall be as follows:

Size | Minimum | Target value | Standard Maximum | Maximum Epitaxial Layer |

Diameter(mm) | 124.7 | 125 | 125.3 | 125.3 |

Thickness at the Center(um) | 505 | 525 | 545 | 545 |

Curvature(um) | – | – | 30 | 45 |

Total Thickness Variation(um) | – | – | 5 | 9 |

Flatness(um) | – | – | 3 | 5.5 |

Warp(um) | – | – | 30 | 45 |

Chipping(um) | – | – | 208 | – |

The flatness variation from the highest point to the lowest point of the ultra-flat test grade on the stepper used to test the focus cannot exceed 2 microns.

### 2.2 Silicon Wafer Crystal Orientation and Reference Plane Position

The crystal orientation of the 5” Si wafer surface should be indicated in the detailed specification. The allowable tolerance is 0.4 degrees. Orthogonal crystal orientation error shall not exceed 0.2 degrees;

Primary reference plane positioning: [110], no secondary reference plane within 1 degree;

Reference surface length: Main reference surface should be 42.5mm±2.5mm.

### 2.3 Doping Material of 125mm Silicon Thin Film

To obtain the P-type silicon wafer, Boron should be doped during the silicon wafer manufacturing process; and for the N-type 125mm wafer of silicon, Phosphorus should be doped.

### 2.4 Non-uniformity of 5” Si Substrate Radial Resistivity

Item | <15 ohm-cm | >15 ohm-cm | ||

N | P | N | P | |

Center and 1/2 radius (R/2) | 9% | 4% | 11% | 6% |

Center and 6 mm from the edge | 14% | 8% | 16% | 12% |

### 2.5 Other Requirements for 125mm Silicon Wafer:

One side of the 5 inch silicon substrate should be polished;

Silicon wafer growth method: Czochralski method;

125mm single crystal silicon wafer dislocation density: none;

Laser marking: It is required to meet the requirements of SEMI standard M1.1-85;

125mm silicon wafer defects limitation range: the area beyond 0.062 inches (1.57mm) from the edge of the silicon wafer is not included.

Note: Unless otherwise specified in the detailed specification, the silicon wafer manufacturing companies should use above requirements.

In order to ensure the production and delivery of fully qualified products, 125mm silicon wafers should be produced under an effective quality control system, including necessary staff training, procedures, equipment calibration, measurement and inspection. As part of quality control, key parameters should be tested regularly.

For more information, please contact us email at [email protected] and [email protected].