GaSb Wafer

PAM-XIAMEN offers GaSb wafer – gallium antimonide which are grown by LEC(Liquid Encapsulated Czochralski) as epi-ready or mechanical grade with n type, p type or semi-insulating in different orientation(111)or(100)

  • Description

Product Description

PAM-XIAMEN offers GaSb wafer – gallium antimonide which are grown by LEC(Liquid Encapsulated Czochralski) as epi-ready or mechanical grade with n type, p type or semi-insulating in different orientation(111)or(100).

Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family.It has a lattice constant of about 0.61 nm. GaSb can be used for Infrared detectors,infrared LEDs and lasers and transistors, and thermophotovoltaic systems.

Here is the detail specification:

2″(50.8mm)GaSb Wafer Specification

3″(50.8mm)GaSb Wafer Specification

4″(100mm) GaSb Wafer Specification

2″ GaSb Wafer Specification

Item Specifications
Dopant Undoped Zinc Tellurium
Conduction Type P-type P-type N-type
Wafer Diameter 2″
Wafer Orientation (100)±0.5°
Wafer Thickness 500±25um
Primary Flat Length 16±2mm
Secondary Flat Length 8±1mm
Carrier Concentration (1-2)x1017cm-3 (5-100)x1017cm-3 (1-20)x1017cm-3
Mobility 600-700cm2/V.s 200-500cm2/V.s 2000-3500cm2/V.s
EPD <2×103cm-2
TTV <10um
BOW <10um
WARP <12um
Laser Marking upon request
Suface Finish P/E, P/P
Epi Ready yes
Package Single wafer container or cassette

 3″ GaSb Wafer Specification

Item Specifications
Conduction Type P-type P-type N-type
Dopant Undoped Zinc Tellurium
Wafer Diameter 3″
Wafer Orientation (100)±0.5°
Wafer Thickness 600±25um
Primary Flat Length 22±2mm
Secondary Flat Length 11±1mm
Carrier Concentration (1-2)x1017cm-3 (5-100)x1017cm-3 (1-20)x1017cm-3
Mobility 600-700cm2/V.s 200-500cm2/V.s 2000-3500cm2/V.s
EPD <2×103cm-2
TTV <12um
BOW <12um
WARP <15um
Laser marking upon request
Suface finish P/E, P/P
Epi ready yes
Package Single wafer container or cassette

4″ GaSb Wafer Specification

Item Specifications
Dopant Undoped Zinc Tellurium
Conduction Type P-type P-type N-type
Wafer Diameter 4″
Wafer Orientation (100)±0.5°
Wafer Thickness 800±25um
Primary Flat Length 32.5±2.5mm
Secondary Flat Length 18±1mm
Carrier Concentration (1-2)x1017cm-3 (5-100)x1017cm-3 (1-20)x1017cm-3
Mobility 600-700cm2/V.s 200-500cm2/V.s 2000-3500cm2/V.s
EPD <2×103cm-2
TTV <15um
BOW <15um
WARP <20um
Laser marking upon request
Suface finish P/E, P/P
Epi ready yes
Package Single wafer container or cassette

1)2″(50.8mm),3″(76.2mm)GaSb wafer

Orientation:(100)±0.5°
Thickness(μm):500±25;600±25
Type/Dopant:P/undoped;P/Si;P/Zn
Nc(cm-3):(1~2)E17
Mobility(cm2/V ·s):600~700
Growth Method:CZ
Polish:SSP

2)2″(50.8mm)GaSb wafer
Orientation:(100)±0.5°
Thickness(μm):500±25;600±25
Type/Dopant:N/undoped;P/Te
Nc(cm-3):(1~5)E17
Mobility(cm2/V ·s):2500~3500
Growth Method:LEC
Polish:SSP

3)2″(50.8mm)GaSb wafer
Orientation:(111)A±0.5°
Thickness(μm):500±25
Type/Dopant:N/Te;P/Zn
Nc(cm-3):(1~5)E17
Mobility(cm2/V ·s):2500~3500;200~500
Growth Method:LEC
Polish:SSP

4)2″(50.8mm)GaSb wafer
Orientation:(111)B±0.5°
Thickness(μm):500±25;450±25
Type/Dopant:N/Te;P/Zn
Nc(cm-3):(1~5)E17
Mobility(cm2/V ·s):2500~3500;200~500
Growth Method:LEC
Polish:SSP

5)2″(50.8mm)GaSb wafer
Orientation:(111)B 2deg.off
Thickness(μm):500±25
Type/Dopant:N/Te;P/Zn
Nc(cm-3):(1~5)E17
Mobility(cm2/V ·s):2500~3500;200~500
Growth Method:LEC
Polish:SSP

Relative products:
InAs wafer
InSb wafer
InP wafer
GaAs wafer
GaSb wafer
GaP wafer

Gallium Antimonide (GaSb) can be supplied as wafers with as-cut, etched or polished finishes and are available in a wide range of carrier concentration, diameter and thickness.

GaSb material presents interesting properties for single junction thermophotovoltaic (TPV) devices. GaSb: Te single crystal grown with Czochralski (Cz) or modified Czo- chralski (Mo-Cz) methods are presented and the problem of Te homogeneity discussed. As the carrier mobility is one of the key points for the bulk crystal, Hall measurements are carried out. We present here some complementary developments based on the material processing point of view: the bulk crystal growth, the wafer preparation, and the wafer etching. Subsequent steps after these are related to the p / no r n/p junction elaboration. Some results obtained for different thin-layer elaboration approaches are presented. So from the simple vapor phase diffusion process or the liquid phase epitaxy process up to the metal organic chemical vapor deposition process we report some material specificity.

You may also like…