The hetero epitaxial materials used to make quantum cascade laser (QCL) are mainly InP based GaInAs/AlInAs material system, GaAs based GaAs/AlGaAs material system and antimonide material system. PAM-XIAMEN can provide InP based quantum cascade lasers thin film, as follows:
1. InGaAs/InAlAs/InP for Quantum Cascade Laser Diode
PAM210906 – QCL
No. 1 InP Hetero Epitaxial Materials for Quantum-Cascade Laser with a Spectral Range of 4-5μm
Layer No. | Material | Group | iteration | Thickness, Å | Doping level Si (cm-3) |
27 | In0.53Ga0.47As | – | – | 2000 | – |
26 | InP | – | – | – | – |
25 | InP | – | – | – | – |
24 | InXXGaXXAs | – | – | – | |
23 | InXXAlXXAs | – | |||
22 | InXXGaXX1As | – | |||
21 | InXXAlXXAs | – | |||
20 | In0.669Ga0.331As | – | |||
19 | InXXAlXXAs | – | |||
18 | InXXGaXXAs | – | |||
17 | InXXAlXXAs | – | |||
16 | InXXGaXXAs | – | |||
15 | InXXAlXXAs | – | |||
14 | InXXGaXXAs | – | |||
13 | InXXAlXXAs | – | |||
12 | InXXGaXXAs | – | |||
11 | InXXAlXXAs | – | – | ||
10 | InXXGaXXAs | – | – | ||
9 | InXXAlXXAs | – | – | ||
8 | InXXGaXXAs | – | – | ||
7 | InXXAlXXAs | – | |||
6 | InXXGaXXAs | – | |||
5 | InXXAlXXAs | – | |||
4 | InXXGaXXAs | – | |||
3 | InXXAlXXAs | – | |||
2 | InP | – | – | – | – |
1 | InP Substrate | 350um | 3×1017 |
No. 2 InGaAs/InAlAs/InP Heteroepitaxy for QCL with a Spectral Range of 7-9μm
Layer No. | Material | Group | iteration | Thickness, Å | Doping level Si (cm-3) |
25 | InXXGaXXAs | – | – | 200 | – |
24 | InXXGaXXAs | – | 1 | – | – |
23 | InP | – | – | – | – |
22 | InXXGaXXAs | – | – | – | |
21 | AlXXInXXAs | – | |||
20 | InXXGaXXAs | – | |||
19 | AlXXInXXAs | – | |||
18 | InXXGaXXAs | – | |||
17 | AlXXInXXAs | – | – | ||
16 | InXXGaXXAs | – | – | ||
15 | AlXXInXXAs | – | – | ||
14 | InXXGaXXAs | – | – | ||
13 | AlXXInXXAs | – | |||
12 | InXXGaXXAs | – | |||
11 | AlXXInXXAs | – | |||
10 | InXXGaXXAs | – | |||
9 | AlXXInXXAs | – | |||
8 | InXXGaXXAs | – | |||
7 | AlXXInXXAs | – | |||
6 | InXXGaXXAs | – | |||
5 | AlXXInXXAs | – | |||
4 | InXXGaXXAs | – | |||
3 | Al0.48In0.52As | – | |||
2 | InXXGaXXAs | – | – | – | 5×1016 |
1 | Substrate InP | – | 1-3×1017 |
No. 3 InAlAs/InGaAs Heteroepitaxial Growth for QCL with a Spectral Range of 7-9μm
Layer No. | Material | group | iteration | Thickness, Å | Doping level Si (cm-3) |
79 | InXXGaXXAs | – | 1 | – | – |
78 | InP | – | – | 2000 | – |
77 | InP | 3 | – | – | – |
76 | InP | – | – | – | 2×1016 |
75 | AlXXInXXAs | – | – | – | – |
74 | InXXGaXXAs | – | – | ||
73 | AlXXInXXAs | – | – | ||
72 | AlXXInXXAs | – | – | ||
71 | InXXGaXXAs | – | – | ||
70 | AlXXInXXAs | – | – | ||
69 | InXXGaXXAs | – | – | ||
68 | AlXXInXXAs | – | – | ||
67 | InXXGaXXAs | – | – | ||
66 | AlXXInXXAs | – | – | ||
65 | InXXGaXXAs | – | – | ||
64 | AlXXInXXAs | – | – | ||
63 | InXXGaXXAs | – | – | ||
62 | AlXXInXXAs | – | – | ||
61 | InXXGaXXAs | – | – | ||
60 | AlXXInXXAs | – | – | ||
59 | InXXGaXXAs | – | – | ||
58 | AlXXInXXAs | – | – | ||
57 | InXXGaXXAs | – | – | ||
56 | AlXXInXXAs | – | – | ||
55 | InXXGaXXAs | – | – | ||
54 | InXXGaXXAs | – | – | – | – |
53 | AlXXInXXAs | – | – | – | – |
52 | InXXGaXXAs | – | – | – | – |
51 | AlXXInXXAs | – | – | – | |
50 | InXXGaXXAs | – | |||
49 | AlXXInXXAs | – | |||
48 | InXXGaXXAs | – | |||
47 | AlXXInXXAs | – | – | ||
46 | InXXGaXXAs | – | – | ||
45 | AlXXInXXAs | – | – | ||
44 | InXXGaXXAs | – | – | ||
43 | AlXXInXXAs | – | – | ||
42 | InXXGaXXAs | – | – | ||
41 | AlXXInXXAs | – | |||
40 | InXXGaXXAs | – | |||
39 | AlXXInXXAs | – | |||
38 | InXXGaXXAs | – | |||
37 | AlXXInXXAs | – | |||
36 | InXXGaXXAs | – | |||
35 | AlXXInXXAs | – | |||
34 | InXXGaXXAs | – | |||
33 | AlXXInXXAs | – | |||
32 | InXXGaXXAs | – | |||
31 | AlXXInXXAs | – | |||
30 | InXXGaXXAs | – | |||
29 | AlXXInXXAs | – | – | – | |
28 | InXXGaXXAs | – | – | – | – |
27 | AlXXInXXAs | – | – | – | |
26 | InXXGaXXAs | – | – | – | |
25 | AlXXInXXAs | – | – | – | |
24 | InXXGaXXAs | – | 1 | – | – |
23 | AlXXInXXAs | – | – | – | – |
22 | InXXGaXXAs | – | – | ||
21 | AlXXInXXAs | – | – | ||
20 | InXXGaXXAs | – | – | ||
19 | AlXXInXXAs | – | – | ||
18 | InXXGaXXAs | – | – | ||
17 | AlXXInXXAs | – | – | ||
16 | InXXGaXXAs | – | – | ||
15 | AlXXInXXAs | – | – | ||
14 | InXXGaXXAs | – | – | ||
13 | AlXXInXXAs | – | – | ||
12 | InXXGaXXAs | – | – | ||
11 | AlXXInXXAs | – | – | ||
10 | InXXGaXXAs | – | – | ||
9 | AlXXInXXAs | – | – | ||
8 | InXXGaXXAs | – | – | ||
7 | AlXXInXXAs | – | – | ||
6 | InXXGaXXAs | – | – | ||
5 | AlXXInXXAs | – | – | ||
4 | InXXGaXXAs | – | – | ||
3 | Al0.48In0.52As | – | – | ||
2 | InP | – | – | – | |
1 | InP Substrate | 350 μm | 3×1018 |
2. Why Fabricate QCL Laser based on InGaAs/AlInAs Hetero-Epitaxial Materials ?
The reasons that using InGaAs/InAlAs hetero epitaxial materials to fabricate QCL mainly are:
1) The laser gain of QCL is proportional to (me) – 3/2. Since the electron effective mass me in InGaAs is smaller than the electron effective mass in GaAs, the gain of InGaAs/InAlAs hetero epitaxial material system is larger than that of GaAs/AlGaAs material system;
2) The conduction band order of InGaAs/InAlAs hetero epitaxial materials system is relatively large shown as in Fig 1, and the energy gap between the high-energy states of laser transitions is large, making quantum cascade semiconductor laser easier to achieve lasing. In addition, there are factors such as waveguide loss and heat dissipation efficiency.
Fig. 1 Lattice Constants (a) and Band Gaps (b) of InGaAs/InAlAs Heteroepitaxial Material
3. What Is A Quantum Cascade Laser?
QCL is a mid infrared band monopole light source based on electron transition between subbands.
How does a quantum cascade laser work? The working principle is different from that of conventional semiconductor lasers. Its lasing scheme is to use the separated electronic states caused by quantum confinement effect in a semiconductor heterostructure thin layer perpendicular to the thickness of nanometer level, and generate particle number inversion between these excited state. The active region of the laser is composed of multi-stage concatenation of coupled quantum wells (usually more than 500 layers) to achieve multi photon output of single electron injection. The fingerprint feature of QCL is that the operating wavelength is not directly related to the band gap of the materials used, but only determined by the subband spacing of the coupled quantum wells, so that the quantum cascade laser wavelength can be tailored in a large range.
At present, quantum cascade laser applications are mainly in gas detection, infrared countermeasure and terahertz communication.
For more information, please contact us email at victorchan@powerwaywafer.com and powerwaymaterial@gmail.com.