Quantum Cascade Laser Wafer

Quantum Cascade Laser Wafer

The hetero epitaxial materials used to make quantum cascade laser (QCL) are mainly InP based GaInAs/AlInAs material system, GaAs based GaAs/AlGaAs material system and antimonide material system. PAM-XIAMEN can provide InP based quantum cascade lasers thin film, as follows:

quantum cascade laser wafer

1. InGaAs/InAlAs/InP for Quantum Cascade Laser Diode

PAM210906 – QCL

No. 1 InP Hetero Epitaxial Materials for Quantum-Cascade Laser with a Spectral Range of 4-5μm

Layer No. Material Group iteration Thickness, Å Doping level
Si (cm-3)
27 In0.53Ga0.47As 2000
26 InP
25 InP
24 InXXGaXXAs
23 InXXAlXXAs
22 InXXGaXX1As
21 InXXAlXXAs
20 In0.669Ga0.331As
19 InXXAlXXAs
18 InXXGaXXAs
17 InXXAlXXAs
16 InXXGaXXAs
15 InXXAlXXAs
14 InXXGaXXAs
13 InXXAlXXAs
12 InXXGaXXAs
11 InXXAlXXAs
10 InXXGaXXAs
9 InXXAlXXAs
8 InXXGaXXAs
7 InXXAlXXAs
6 InXXGaXXAs
5 InXXAlXXAs
4 InXXGaXXAs
3 InXXAlXXAs
2 InP
1 InP Substrate 350um 3×1017

 

No. 2 InGaAs/InAlAs/InP Heteroepitaxy for QCL with a Spectral Range of 7-9μm 

Layer No. Material Group iteration Thickness, Å Doping level

Si (cm-3)

25 InXXGaXXAs 200
24 InXXGaXXAs 1
23 InP
22 InXXGaXXAs
21 AlXXInXXAs
20 InXXGaXXAs
19 AlXXInXXAs
18 InXXGaXXAs
17 AlXXInXXAs
16 InXXGaXXAs
15 AlXXInXXAs
14 InXXGaXXAs
13 AlXXInXXAs
12 InXXGaXXAs
11 AlXXInXXAs
10 InXXGaXXAs
9 AlXXInXXAs
8 InXXGaXXAs
7 AlXXInXXAs
6 InXXGaXXAs
5 AlXXInXXAs
4 InXXGaXXAs
3 Al0.48In0.52As
2 InXXGaXXAs 5×1016
1 Substrate InP 1-3×1017

 

No. 3 InAlAs/InGaAs Heteroepitaxial Growth for QCL with a Spectral Range of 7-9μm

Layer No. Material group iteration Thickness, Å Doping level
Si (cm-3)
79 InXXGaXXAs 1
78 InP 2000
77 InP 3
76 InP 2×1016
75 AlXXInXXAs
74 InXXGaXXAs
73 AlXXInXXAs
72 AlXXInXXAs
71 InXXGaXXAs
70 AlXXInXXAs
69 InXXGaXXAs
68 AlXXInXXAs
67 InXXGaXXAs
66 AlXXInXXAs
65 InXXGaXXAs
64 AlXXInXXAs
63 InXXGaXXAs
62 AlXXInXXAs
61 InXXGaXXAs
60 AlXXInXXAs
59 InXXGaXXAs
58 AlXXInXXAs
57 InXXGaXXAs
56 AlXXInXXAs
55 InXXGaXXAs
54 InXXGaXXAs
53 AlXXInXXAs
52 InXXGaXXAs
51 AlXXInXXAs
50 InXXGaXXAs
49 AlXXInXXAs
48 InXXGaXXAs
47 AlXXInXXAs
46 InXXGaXXAs
45 AlXXInXXAs
44 InXXGaXXAs
43 AlXXInXXAs
42 InXXGaXXAs
41 AlXXInXXAs
40 InXXGaXXAs
39 AlXXInXXAs
38 InXXGaXXAs
37 AlXXInXXAs
36 InXXGaXXAs
35 AlXXInXXAs
34 InXXGaXXAs
33 AlXXInXXAs
32 InXXGaXXAs
31 AlXXInXXAs
30 InXXGaXXAs
29 AlXXInXXAs
28 InXXGaXXAs
27 AlXXInXXAs
26 InXXGaXXAs
25 AlXXInXXAs
24 InXXGaXXAs 1
23 AlXXInXXAs
22 InXXGaXXAs
21 AlXXInXXAs
20 InXXGaXXAs
19 AlXXInXXAs
18 InXXGaXXAs
17 AlXXInXXAs
16 InXXGaXXAs
15 AlXXInXXAs
14 InXXGaXXAs
13 AlXXInXXAs
12 InXXGaXXAs
11 AlXXInXXAs
10 InXXGaXXAs
9 AlXXInXXAs
8 InXXGaXXAs
7 AlXXInXXAs
6 InXXGaXXAs
5 AlXXInXXAs
4 InXXGaXXAs
3 Al0.48In0.52As
2 InP
1 InP Substrate 350 μm 3×1018

 

2. Why Fabricate QCL Laser based on InGaAs/AlInAs Hetero-Epitaxial Materials ?

The reasons that using InGaAs/InAlAs hetero epitaxial materials to fabricate QCL mainly are:

1) The laser gain of QCL is proportional to (me) – 3/2. Since the electron effective mass me in InGaAs is smaller than the electron effective mass in GaAs, the gain of InGaAs/InAlAs hetero epitaxial material system is larger than that of GaAs/AlGaAs material system;

2) The conduction band order of InGaAs/InAlAs hetero epitaxial materials system is relatively large shown as in Fig 1, and the energy gap between the high-energy states of laser transitions is large, making quantum cascade semiconductor laser easier to achieve lasing. In addition, there are factors such as waveguide loss and heat dissipation efficiency.

Lattice Constants (a) and Band Gaps (b) of InGaAs/InAlAs Heteroepitaxial Material

Fig. 1 Lattice Constants (a) and Band Gaps (b) of InGaAs/InAlAs Heteroepitaxial Material

3. What Is A Quantum Cascade Laser?

QCL is a mid infrared band monopole light source based on electron transition between subbands.

How does a quantum cascade laser work? The working principle is different from that of conventional semiconductor lasers. Its lasing scheme is to use the separated electronic states caused by quantum confinement effect in a semiconductor heterostructure thin layer perpendicular to the thickness of nanometer level, and generate particle number inversion between these excited state. The active region of the laser is composed of multi-stage concatenation of coupled quantum wells (usually more than 500 layers) to achieve multi photon output of single electron injection. The fingerprint feature of QCL is that the operating wavelength is not directly related to the band gap of the materials used, but only determined by the subband spacing of the coupled quantum wells, so that the quantum cascade laser wavelength can be tailored in a large range.

At present, quantum cascade laser applications are mainly in gas detection, infrared countermeasure and terahertz communication.

powerwaywafer

For more information, please contact us email at victorchan@powerwaywafer.com and powerwaymaterial@gmail.com.

Share this post